709 research outputs found

    Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage

    Get PDF
    Gravity waves (GWs) transport momentum and energy in the atmosphere, exerting a profound influence on the global circulation. Accurately measuring them is thus vital both for understanding the atmosphere and for developing the next generation of weather forecasting and climate prediction models. However, it has proven very difficult to measure the full set of GW parameters from satellite measurements, which are the only suitable observations with global coverage. This is particularly critical at latitudes close to 60° S, where climate models significantly under-represent wave momentum fluxes. Here, we present a novel fully 3-D method for detecting and characterising GWs in the stratosphere. This method is based around a 3-D Stockwell transform, and can be applied retrospectively to existing observed data. This is the first scientific use of this spectral analysis technique. We apply our method to high-resolution 3-D atmospheric temperature data from AIRS/Aqua over the altitude range 20–60 km. Our method allows us to determine a wide range of parameters for each wave detected. These include amplitude, propagation direction, horizontal/vertical wavelength, height/direction-resolved momentum fluxes (MFs), and phase and group velocity vectors. The latter three have not previously been measured from an individual satellite instrument. We demonstrate this method over the region around the Southern Andes and Antarctic Peninsula, the largest known sources of GW MFs near the 60° S belt. Our analyses reveal the presence of strongly intermittent highly directionally focused GWs with very high momentum fluxes (∼ 80–100 mPa or more at 30 km altitude). These waves are closely associated with the mountains rather than the open ocean of the Drake Passage. Measured fluxes are directed orthogonal to both mountain ranges, consistent with an orographic source mechanism, and are largest in winter. Further, our measurements of wave group velocity vectors show clear observational evidence that these waves are strongly focused into the polar night wind jet, and thus may contribute significantly to the "missing momentum" at these latitudes. These results demonstrate the capabilities of our new method, which provides a powerful tool for delivering the observations required for the next generation of weather and climate models

    Meteor showers of comet C/1917 F1 Mellish

    Full text link
    December Monocerotids and November Orionids are weak but established annual meteor showers active throughout November and December. Analysis of a high quality orbits subset of the SonotaCo video meteor database shows that the distribution of orbital elements, geocentric velocity and also the orbital evolution of the meteors and potential parent body may imply a common origin for these meteors coming from the parent comet C/1917 F1 Mellish. This is also confirmed by the physical properties and activity of these shower meteors. An assumed release of meteoroids at the perihelion of the comet in the past and the sky-plane radiant distribution reveal that the December Monocerotid stream might be younger than the November Orionids. A meteoroid transversal component of ejection velocity at the perihelion must be larger than 100 m/s. A few authors have also associated December Canis Minorids with the comet C/1917 F1 Mellish. However, we did not find any connection.Comment: 11 pages, 11 figures and 5 table

    The rat retrosplenial cortex as a link for frontal functions: a lesion analysis

    Get PDF
    Cohorts of rats with excitotoxic retrosplenial cortex lesions were tested on four behavioural tasks sensitive to dysfunctions in prelimbic cortex, anterior cingulate cortex, or both. In this way the study tested whether retrosplenial cortex has nonspatial functions that reflect its anatomical interactions with these frontal cortical areas. In Experiment 1, retrosplenial cortex lesions had no apparent effect on a set-shifting digging task that taxed intradimensional and extradimensional attention, as well as reversal learning. Likewise, retrosplenial cortex lesions did not impair a strategy shift task in an automated chamber, which involved switching from visual-based to response-based discriminations and, again, included a reversal (Experiment 2). Indeed, there was evidence that the retrosplenial lesions aided the initial switch to response-based selection. No lesion deficit was found on an automated cost-benefit task that pitted size of reward against effort to achieve that reward (Experiment 3). Finally, while retrosplenial cortex lesions affected matching-to-place task in a T-maze, the profile of deficits differed from that associated with prelimbic cortex damage (Experiment 4). When the task was switched to a nonmatching design, retrosplenial cortex lesions had no apparent effect on performance. The results from the four experiments show that many frontal tasks do not require the retrosplenial cortex, highlighting the specificity of their functional interactions. The results show how retrosplenial cortex lesions spare those learning tasks in which there is no mismatch between the internal and external representations used to guide behavioural choice. In addition, these experiments further highlight the importance of the retrosplenial cortex in solving tasks with a spatial component

    How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?

    Get PDF
    Atmospheric reanalyses are data-assimilating weather models which are widely used as proxies for the true state of the atmosphere in the recent past. This is particularly the case for the stratosphere, where historical observations are sparse. But how realistic are these stratospheric reanalyses? Here, we resample stratospheric temperature data from six modern reanalyses (CFSR, ERA-5, ERA-Interim, JRA-55, JRA-55C and MERRA-2) to produce synthetic satellite observations, which we directly compare to retrieved satellite temperatures from COSMIC, HIRDLS and SABER and to brightness temperatures from AIRS for the 10-year period of 2003–2012. We explicitly sample standard public-release products in order to best assess their suitability for typical usage. We find that all-time all-latitude correlations between limb sounder observations and synthetic observations from full-input reanalyses are 0.97–0.99 at 30&thinsp;km in altitude, falling to 0.84–0.94 at 50&thinsp;km. The highest correlations are seen at high latitudes and the lowest in the sub-tropics, but root-mean-square (RMS) differences are highest (10&thinsp;K or greater) in high-latitude winter. At all latitudes, differences increase with increasing height. High-altitude differences become especially large during disrupted periods such as the post-sudden stratospheric warming recovery phase, in which zonal-mean differences can be as high as 18&thinsp;K among different datasets. We further show that, for the current generation of reanalysis products, a full-3-D sampling approach (i.e. one which takes full account of the instrument measuring volume) is always required to produce realistic synthetic AIRS observations, but is almost never required to produce realistic synthetic HIRDLS observations. For synthetic SABER and COSMIC observations full-3-D sampling is required in equatorial regions and regions of high gravity-wave activity but not otherwise. Finally, we use cluster analyses to show that full-input reanalyses (those which assimilate the full suite of observations, i.e. excluding JRA-55C) are more tightly correlated with each other than with observations, even observations which they assimilate. This may suggest that these reanalyses are over-tuned to match their comparators. If so, this could have significant implications for future reanalysis development.</p

    A novel role for the rat retrosplenial cortex in cognitive control

    Get PDF
    By virtue of its frontal and hippocampal connections, the retrosplenial cortex is uniquely placed to support cognition. Here, we tested whether the retrosplenial cortex is required for frontal tasks analogous to the Stroop Test, i.e., for the ability to select between conflicting responses and inhibit responding to task-irrelevant cues. Rats first acquired two instrumental conditional discriminations, one auditory and one visual, set in two distinct contexts. As a result, rats were rewarded for pressing either the right or left lever when a particular auditory or visual signal was present. In extinction, rats received compound stimuli that either comprised the auditory and visual elements that signaled the same lever response (congruent) or signaled different lever responses (incongruent) during training. On conflict (incongruent) trials, lever selection by sham-operated animals followed the stimulus element that had previously been trained in that same test context, whereas animals with retrosplenial cortex lesions failed to disambiguate the conflicting response cues. Subsequent experiments demonstrated that this abnormality on conflict trials was not due to a failure in distinguishing the contexts. Rather, these data reveal the selective involvement of the rat retrosplenial cortex in response conflict, and so extend the frontal system underlying cognitive control

    Stratospheric Gravity Waves as a Proxy for Hurricane Intensification:A Case Study of Weather Research and Forecast Simulation for Hurricane Joaquin

    Get PDF
    We conducted simulations with a 4-km resolution for Hurricane Joaquin in 2015 using the weather research and forecast (WRF) model. The model data are used to study stratospheric gravity waves (GWs) generated by the hurricane and how they correlate with hurricane intensity. The simulation results show spiral GWs propagating upward and anticlockwise away from the hurricane center. GWs with vertical wavelengths up to 14 km are generated. We find that GW activity is more frequent and intense during hurricane intensification than during weakening, particularly for the most intense GW activity. There are significant correlations between the change of stratospheric GW intensity and hurricane intensity. Therefore, the emergence of intensive stratospheric GW activity may be considered a useful proxy for identifying hurricane intensification

    An evaluation of a nurse led unit: an action research study

    Get PDF
    This study is an exemplar of working in a participatory way with members of the public and health and social care practitioners as co-researchers. A Nurse Consultant Older People working in a nurse-led bed, intermediate care facility in a community hospital acted as joint project lead with an academic researcher. From the outset, members of the public were part of a team of 16 individuals who agreed an evaluation focus and were involved in all stages of the research process from design through to dissemination. An extensive evaluation reflecting all these stakeholders’ preferences was undertaken. Methods included research and audit including: patient and carer satisfaction questionnaire surveys, individual interviews with patients, carers and staff, staff surveys, graffiti board, suggestion box, first impressions questionnaire, patient tracking and a bed census. A key aim of the study has been capacity building of the research team members which has also been evaluated. In terms of impact, the co-researchers have developed research skills and knowledge, grown in confidence, developed in ways that have impacted elsewhere in their lives, developed posters, presented at conferences and gained a better understanding of the NHS. The evaluation itself has provided useful information on the processes and outcomes of intermediate care on the ward which was used to further improve the service
    corecore